Sl1QP Based Algorithm with Trust Region Technique for Solving Nonlinear Second-Order Cone Programming Problems

نویسنده

  • Kohei YASUDA
چکیده

In this paper, we propose an algorithm based on Fletcher’s Sl1QP method and the trust region technique for solving Nonlinear Second-Order Cone Programming (NSOCP) problems. The Sl1QP method was originally developed for nonlinear optimization problems with inequality constraints. It converts a constrained optimization problem into an unconstrained problem by using the l1 exact penalty function, and then finds an optimum by solving approximate quadratic programming subproblems successively. In order to apply the Sl1QP method to the NSOCP problem, we introduce an exact penalty function with respect to second-order cone constraints and reformulate the NSOCP problem as an unconstrained optimization problem. However, since each subproblem generated by the Sl1QP method is not differentiable, we reformulate it as a second-order cone programming problem whose objective function is quadratic and constraint functions are affine. We analyze the convergence property of the proposed algorithm, and show that the generated sequence converge to a stationary point of the NSOCP problem under mild assumptions. We also confirm the efficiency of the algorithm by means of numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

A Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)

This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...

متن کامل

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Nonlinear programming without a penalty function

Abstract. In this paper the solution of nonlinear programming problems by a Sequential Quadratic Programming (SQP) trust-region algorithm is considered. The aim of the present work is to promote global convergence without the need to use a penalty function. Instead, a new concept of a “filter” is introduced which allows a step to be accepted if it reduces either the objective function or the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013